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Challenges in Mining Medical Texts

Medical data often exists in free-text form, which is usually underused.

Symptoms and patterns in medical texts are described in variable and

non-uniform terms.

Extracting insights from them requires substantial time, expertise, and

resources.

Many institutions lack the personnel to routinely analyze vast amounts of

textual data.

We propose a Conformal Active Learning framework combining active learn-

ing with label-conditional conformal prediction to automate epidemiological

surveillance. Key contributions include: (1) a novel Conformal Active Learn-

ing framework that combines active learning with label-conditional confor-

mal prediction, offering reliable predictionswhile minimizing manual labelling;

(2) a model-agnostic design that works with any classification model capable

of generating embeddings; (3) a clustering-based selection process that im-

proves performance by ensuring diversity on the texts selected for manual

labelling; and (4) the release of open-source and user-friendlyweb interface,

OLIM to facilitate deployment and accessibility.

Conformal Active Learning

Goal: Infer accurate labels Y (e.g., whether a patient has a specific symptom)

for unstructured text data X , such as texts from Electronic Health Records

(EHRs), while minimizing the amount of manual labelling required.
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Figure 1. Active learning workflow.

Conformity Scores: For each data point x, the classification model estimates
the probability p̂(y|x) that x belongs to category y. Than we calibrate a label-
conditional conformal model on the validation dataset. This allows each point

x to be associated with a conformity score:

s(x, y) = 1 − p̂(y|x).
Ranking Samples by Uncertainty: After predictions, for each sample X , we

calculate the mean conformity score across its predicted label set Cα(X):

SX = 1
|Cα(X)|

∑
y∈Cα(X)

s(X, y)

Data points are ranked based on their scores, with higher scores indicating

greater uncertainty.

Clustering Selection for Manual labelling: To ensure diversity, we select the

ktop samples with the highest uncertainty scores. Using the classification

model’s embeddings we apply k-means clustering to group these samples

into kcluster clusters (kcluster < ktop). From each cluster, select the sample clos-

est to the centroid as the most representative data point for manual labelling.

Mixing high- and low-uncertainty: Optionally, we can include a fraction of

low-uncertainty points in ktop before clustering to validatemodel performance
on straightforward cases. By combining uncertainty-based ranking with clus-

tering, the framework maximizes the value of manually labeled data and ac-

celerates model improvement.

Deployability

Our framework is classification model-agnostic, requiring only text embed-

dings for operation. On-premise deployment preserves privacy by process-

ing sensitive EHR data locally, even on low-resource hardware. Open-source

code and Docker containers enable seamless installation. Compatible with

lightweight models or more advanced architectures (such as transformers),

our framework generates de-identified, structured insights for epidemiologi-

cal analysis and monitoring while keeping raw patient data secure.

OLIM interface

We also developed OLIM (Open Labeller for Iteractive Machine Learning,

Figures 2 and 3), it provides a web-based interface for collaborative text

labelling, featuring role-based access, Elasticsearch-powered text filtering,

and bulk export and import operations. Tightly integrated with the active

learning framework, it prioritizes uncertain samples for annotation. Dock-

erized deployment supports both cloud or on-premise, and even mixed se-

tups.

Figure 2. Label management dashboard

with active learning controls.

Figure 3. Interaction page for domain

specialists (in development).

Experiments

Experimental Setup We evaluated our framework on Amazon product re-

views—as a proxy for unavailable public medical text databases, sharing many of

the same challenges—using four labels: Pet/Drinkable Product (common), Low

Quality (subjective), and Damaged (rare). Experiments used 100–200 man-

ual labels, ktop = 500, kcluster = 6, and 90% confidence. Classification models

included lightweight (XGBoost+TF-IDF) and transformers (DeBERTaV3) ar-

chitectures.

Key Results With 200 labels, XGBoost achieved 92% and 85% accuracy on

common labels (Table 1). Mixing high/low uncertainty samples boosted AUC-

ROC and stabilized convergence (Figure 4). Rare labels (Damaged) required

40 pre-labels to reach AUC-ROC of 75%. Surprisingly, DeBERTaV3 under-

performed (44% accuracy and 66% AUC-ROC for Pet product), suggesting

simpler models suffice for resource-constrained settings.

Label Accuracy AUC-ROC Yes/No

Pet product 0.92 ± 0.01 0.94 ± 0.06 62/138

Drinkable product 0.85 ± 0.01 0.82 ± 0.04 70/130

Low quality 0.77 ± 0.01 0.79 ± 0.04 46/154

Damaged1 0.91 ± 0.01 0.75 ± 0.08 39/161

Table 1. Final performance with XGBoost+TF-IDF for the proposed labels after 200 manual

labels using our framework, with ktop split 30/70 on high and low uncertainty, started with

20 pre-labelled texts. (1Started with 40 pre-labelled texts.)
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Figure 4. Convergence of AUC-ROC for the Pet product label, using XGBoost+TF-IDF.
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