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Background

Syndromic surveillance systems are essential for early detection of disease out-

breaks and emerging health threats [2]. Traditional manual curation of clinical

data is time-consuming and resource-intensive, creating critical delays in public

health response. Large Language Models (LLMs) offer a promising solution to

accelerate medical data processing while maintaining accuracy. However, de-

ploying LLMs in healthcare settings requires addressing challenges of reliability,

interpretability, and statistical validity. Active Learning (AL) frameworks [1, 3]

can optimize the annotation process by strategically selecting the most informa-

tive samples for human review, reducing labeling effort while improving model

performance. This work addresses these challenges by combining LLM-based

classification with conformal prediction and active learning to create a robust,

scalable system for syndromic surveillance in real-world clinical settings.

OLIM development

In order to make our methodology easily available, we also developed OLIM

(Open Labeller for Iteractive Machine Learning, Figures 1 and 2). It provides

a web-based interface for collaborative text labelling, featuring role-based ac-

cess, Elasticsearch-powered text filtering, and bulk export and import opera-

tions. Tightly integratedwith the AL framework it prioritizes uncertain samples

for annotation. Dockerized deployment supports cloud or on-premise setups.

Figure 1. Label management dashboard with

active learning controls.

Figure 2. Interaction page for domain

specialists.

Conformal Active Learning

Our framework combines conformal prediction with automated selection to

transform LLM outputs into reliable predictions with statistical guarantees. By

leveraging human annotations to train a selection model, we ensure both statis-

tical rigor and practical utility in high-stakes applications.
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Figure 3. Active learning workflow.

The conformal calibration step provides formal coverage guarantees, ensur-

ing predictions contain the true answer with user-specified confidence. Auto-

mated selection then filters these calibrated outputs based on quality thresholds

learned from annotations.
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Performance of LLM-based classification

We augmented standard Active Learning with a zero-shot LLM classifier, using

carefully designed prompts to generate preliminary labels on a subset of data.

This dataset, comprising 100,000 clinical records from São João do Meriti (Jan-

Apr 2025), was accessed via a partnership with the Rio de Janeiro State Health

Department (SES-RJ). Our primary goal is measles surveillance through detec-

tion of core symptoms: fever, cough, coryza, exanthema, and conjunctivitis For

evaluation of the LLM classification, an initial subset of the data was manually la-

beled for each symptom. For classification, we first selected a model from a pool

of open-weight options based on performance on a validation set and technical

constraints (i.e., model size). The top-performing model was Qwen2.5-1.5B.

We employed two prompting strategies for symptom classification:

1. Simple Prompt: A direct instruction for the model to output ’present’ or

’absent’ for a given symptom based on the clinical note.

2. Knowledge-Enhanced Prompt: This method involved injecting a dictionary

of curated medical knowledge definitions into the prompt context to ground

the model’s reasoning in clinical terminology.

Symptom Accuracy Precision F1 Sensitivity N

Conjunctivitis 0.911 0.837 0.854 0.872 157

Coryza 0.829 0.750 0.822 0.909 76

Exanthema 0.971 0.981 0.972 0.964 103

Fever 0.915 0.828 0.896 0.976 224

Cough 0.984 1.000 0.981 0.964 126

Table 1. Performance of the LLM on our manually labeled dataset for validation. Inference for

all large language models (LLMs) was performed on an NVIDIA RTX 6000 Ada Generation GPU

with 48 GB of VRAM.

Classification via LLMs offers key advantages over classical NLP by resolving

ambiguous cases through contextual reasoning. This is evidenced by errors

from the Simple Prompt that were corrected by the Knowledge-Enhanced

approach (translated example):

Female patient [...] presenting with a maculopapular rash on the upper limbs,

[...]. The patient is at the appointment with her mother,[...] not presentingwith

a rash.

Here, the LLM correctly attributes the rash to the daughter, while a simple

keyword search would be misled by the negation applied to the mother. This

demonstrates the LLM’s superior ability to handle linguistic complexity,

especially for rare symptoms like exanthema.

We defined a suspected measles case based on the standard clinical criteria: a

patient presenting with fever, exanthema, and at least one of the following:

conjunctivitis, coryza, or cough. The resulting time series of suspected cases,

smoothed with a moving average filter, is shown below.

Figure 4. Trend of suspected measles cases over time (7-day moving average).

Discussion

Our results demonstrate that Large Language Models (LLMs) significantly im-

prove symptom detection in clinical notes. Future work will focus on the follow-

ing directions:

Expanding the knowledge base: medical knowledge to enhance LLM

prompting.

Incorporating spatial data: enabaling outbreak analysis and cluster detection.

Domain-specific refinement: Fine-tuning LLMs on Brazilian clinical notes.

https://gitlab.com/nanogennari/olim

https://gitlab.com/nanogennari/olim
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